
CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

Lecture 09: Prelude to Deep Learning: Linear Regression, Logistic Regression,
Classification with Logistic Regression, Finding Solutions with Gradient Descent

Linear Regression relates some number of independent variables (real numbers)

 X1, X2, ..., Xn

with a dependent or response variable Y. The output is the set of parameters (here,
slope m and bias b) showing the best approximation of the linear relationship of the
variables.

Linear Regression

X

Y

bias b

Linear regression can be calculated for any number of dimensions
with a magically simple formula from linear algebra:

Linear Regression

In linear regression, we define the error of the prediction as

the MSE (mean squared errors) of the predictions

We seek the least amount of error in the approximation,

hence the “least squares” line.

In machine learning, we generally call this the

cost function, so we seek an approximation of least cost.

Introduction to Deep Learning
Linear Regression: What is ”least” about the least-squares
approximation of a line?

The magic formula

gives us an analytic solution with the smallest possible cost.

But what if there is no magic formula??

If there is no analytical solution (a formula), then we must use a search

algorithm called Gradient Descent to find the parameter values which

minimize this cost.

We’ll return to Gradient Descent in a bit, but let’s look at the most

important application of regression to classification problems….

Linear Regression: Using Gradient Descent to find minimal-cost solution

Introduction to Deep Learning

But linear regression doesn't work for many problems! Suppose
we attempt to classify 16 people as male or female depending on
a single feature: their height. Men in general are taller than
women (the average height of an American man is 5’ 9” and for
women 5’ 4”),
X = height against Y = gender (1 for male, 0 for female):

Logistic Regression: A Motivating Example

Male:

Female
:

Introduction to Deep Learning

If we plug this into the linear regression algorithm, we get
the following:

Logistic Regression: Motivating Example

There are many issues with this:

How can we use this to predict
someone’s gender from their height?

How to give the probability of their
gender?

There is clearly no linear trend, so
what does the line even mean?

Introduction to Deep Learning

In order to solve this, we will transform the scale of Y into a
new domain, in this case into the real interval [0..1] used for
probabilities. This is called the Logit Transformation, and is
based on the notion of a sigmoid function of
the form

Notice that:

Logistic Regression: The Logit Transformation

Introduction to Deep Learning

Linear Regression: Logistic Regression:

Logistic Regression: The Logit Transformation

This is called the “logit”
or the “log odds ratio.”

The punchline here is that we will transform the regression line into a sigmoid,
and use it to give us the probability that a given individual is male, and then
define as a decision boundary a threshold (typically 0.5) by which we will decide
if the binary output is 1 or 0:

However, there is no analytical solution (no magic formula!) once we use the logit
transformation, so we will need to use gradient descent to minimize an
appropriate cost function.

Logistic Regression: The Logit Transformation

Caveat: Such
decision boundaries
are typically not
used in neural
networks, so the
output is between 0
and 1.

In linear regression, we have explicit formulae for finding the parameters for the
slope m and bias b of the regression line which minimizes the MSE.

But what if we didn’t? We could then use an iterative approximation algorithm
called Gradient Descent to find an approximation of the values which minimize
the MSE.

Basic idea: Define a cost or loss function J(...) which gives the cost or penalty
measuring how well the model parameters fit the actual data (high cost = bad fit),
and then search for the parameters which minimize this cost.

Reference: https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Linear Regression Redux: Gradient Descent to find and

Cost Function
 = MSE

The J in the cost function
is used in machine
learning and refers to the
Jacobian Matrix.

Introduction to Deep Learning
Here’s a very simple example: Suppose we want to find a regression

line satisfying Y = m*X (i.e., there is no bias term b). The cost

function is quadratic, so we get a parabola when we graph the slope

M against the MSE:

Gradient Descent is an iterative approximation algorithm,
which "tweaks" the parameters to move in the direction of
lower cost (smaller errors).

Introduction to Deep Learning

Gradient Descent is an iterative approximation algorithm,
which "tweaks" the parameters to move in the direction of
lower cost (smaller errors).

Introduction to Deep Learning

Introduction to Deep Learning

Gradient Descent is an iterative approximation algorithm,
which "tweaks" the parameters to move in the direction of
lower cost (smaller errors).

Least cost solution

With MSE, we always get a convex cost function, even in higher
dimensions:

Introduction to Deep Learning

The Gradient Descent Algorithm: A gradient is a generalization of a derivative
to functions of more than one variable:

In gradient descent, we pick a place to start, and move down the gradient until
we find a minimum point:

Another nice summary: https://hackernoon.com/gradient-descent-aynk-
7cbe95a778da

Linear Regression Redux: Gradient Descent

“Like the derivative, the gradient represents the slope of the
tangent of the graph of the function. More precisely, the gradient
points in the direction of the greatest rate of increase of the
function, and its magnitude is the slope of the graph in that
direction.” - Wikipedia

When the search space
is convex, such as a
paraboloid, there will be
a single minimum!

To find the minimum value along one axis
we will work with only one of the partial
derivatives as a time, say the bias b:

Step One: Choose an initial point b0.
Step Two: Choose a step size or learning rate 𝜆	and threshold of accuracy 𝜀.
Step Three: Move that distance along the axis, in the decreasing direction (the
negative of the slope), and repeat until the distance moved is less than 𝜀.
Step Four: Output bn+1 as the minimum.

Linear Regression Redux: Gradient Descent to find m and b

Partial derivative of cost function with respect
to parameter b.

Gradient Descent for Linear Regression:

To find a point in multiple dimensions, we simply do all dimensions in the same way
at the same time. Here is the algorithm:

def update_weights(m, b, X, Y, learning_rate):
 m_deriv = 0
 b_deriv = 0
 N = len(X)
 for i in range(N):
 # Calculate partial derivatives
 # -2x(y - (mx + b))
 m_deriv += -2*X[i] * (Y[i] - (m*X[i] + b))

 # -2(y - (mx + b))
 b_deriv += -2*(Y[i] - (m*X[i] + b))

 # We subtract because the derivatives point in direction of steepest ascent
 m -= (m_deriv / float(N)) * learning_rate
 b -= (b_deriv / float(N)) * learning_rate

 return m, b

Linear Regression Redux: Gradient Descent to find and

As the parameters are “tuned” to minimize the cost (= measuring how well the
parameters fit the model) you get a better and better fit between the model and the
data. You can run the gradient descent model as long as you wish to get a better fit.
Obviously, defining the cost function and picking the learning rate and threshold are
critical decisions, and much research has been devoted to different cost models and
different approaches to gradient descent.

Linear Regression Redux: Gradient Descent to find and

Text Classification: Is this spam?

Who wrote which Federalist
papers?

§ 1787-8: anonymous essays try to convince New
York to ratify U.S Constitution: Jay, Madison,
Hamilton.

§ Authorship of 12 of the letters in dispute
§ 1963: solved by Mosteller and Wallace using

Bayesian methods

James Madison Alexander Hamilton

What is the subject of this medical
article?

§ Antogonists and
Inhibitors

§ Blood Supply
§ Chemistry
§ Drug Therapy
§ Embryology
§ Epidemiology
§ …

23

MeSH Subject Category Hierarchy

?

MEDLINE Article

Positive or negative movie
review?

...zany characters and richly applied satire, and some
great plot twists

It was pathetic. The worst part about it was the boxing
scenes...

...awesome caramel sauce and sweet toasty almonds. I
love this place!

...awful pizza and ridiculously overpriced... 24

+

+

−

−

Positive or negative movie
review?

...zany characters and richly applied satire, and some
great plot twists

It was pathetic. The worst part about it was the boxing
scenes...

...awesome caramel sauce and sweet toasty almonds. I
love this place!

...awful pizza and ridiculously overpriced... 25

+

+

−

−

Text Classification: Definition
§ Input:

§ a document d
§ a fixed set of labels/classes C = {c1, c2,…, cJ}

§ Output: a predicted class c Î C

Caveats: In general, an algorithm will return probabilities for all
document classes: this can be used to find the single best class, or—by
setting a threshold or a bound on the number of classes—a set of
classes.

Classification Methods: Hand-coded
rules

§ Rules based on combinations of words or other features
§ spam: black-list-address OR (“dollars” AND “you have been selected”)

§ Accuracy can be high
§ If rules carefully refined by expert

§ But building and maintaining these rules is expensive

Classification Methods: Supervised ML

§ Input:
§ a fixed set of classes C = {c1, c2,…, cJ}
§ a randomly-permuted set of labeled documents

(d1,c1),....,(dn,cn) split into
§ a training set (d1,c1),....,(dm,c)
§ a testing set dm+1,....,dn (labels withheld)

§ Output:
§ A classifier γ : d à c trained the training set

§ The testing set with labels calculated by γ
§ Test results (confusion matrix, metrics, etc.)

28

Classification Methods: Supervised ML

§ There are many different kinds of classifiers for
labeled data
§ Naïve Bayes

§ Logistic regression

§ Neural networks

Classification Methods: Unsupervised ML

§ Input:
§ A set of documents d1,....,dn

§ Requested number k of classes

§ Output:
§ A partition of the document set into classes 1, ..., k
§ List of k centroids (center-point of each

cluster
§ Evaluation metrics (e.g., mean distance of cluster

members from centroids)

30

Components of a probabalistic
machine learning classifier

1. A feature representation of the input. For each input
observation x(i), a vector of features [x1, x2, ... , xn].
Feature j for input x(i) is xj, more completely xj(i), or
sometimes fj(x).

Given m input/output pairs (x(i),y(i)):

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

Feature Vectors Class

x1 x2 x3 ... x19 x20 y

x6(3)

y(2)

Components of a probabilistic ML
classifier

1. A feature representation of the input. For each input
observation x(i), a vector of features [x1, x2, ... , xn]. Feature
j for input x(i) is xj, more completely xj(i), or sometimes
fj(x).

2. A classification function, like the sigmoid or softmax
function, that uses weights W	=	[w1,	w2,	...,	wn] and b for
each feature to calculate the probability for each possible
class (𝑦,	

Given m input/output pairs (x(i),y(i)):

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

Components of a probabilistic
machine learning classifier

1. A feature representation of the input. For each input observation x(i),
a vector of features [x1, x2, ... , xn]. Feature j for input x(i) is xj, more
completely xj(i), or sometimes fj(x).

2. A classification function, like the sigmoid or softmax function, that
uses weights W	=	[w1,	w2,	...,	wn] and b for each feature to calculate
the probability for each possible class (𝑦.

3. A learning algorithm to find the weights W and b from the training
set:

• An objective/cost function, for estimating the errors in
 classification, e.g., cross-entropy loss.
• A search algorithm using the objective function to find
 the W with least error: stochastic gradient descent.

Given m input/output pairs (x(i),y(i)):

The Phases of Logistic
Regression:

Gradient Descent
Algorithm to find best
W,b

Test each prediction
for test setW,b

Test Set
Training
Set as
features

metrics:
accuracy,
precision,
recall, F1

Hyperparameters

Θ

